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Motivation 

• Serial computing has reached its zenith in performance. In 

the foreseeable future, parallelism will be the key ingredient 

for increasing performance. 

• Most applications benefit from powerful combination of a 

massively parallel GPU and a fast multicore CPU.  

• GPU Architectures: Fermi->Kepler->Maxwell  

• Heterogeneous Multi-Core CPU-GPU clusters for HPC 

• GPUs are very effective at exploiting parallelism in regular, 

data-parallel algorithms (arrays & matrices operations) 

• Irregular algorithms arise from complex data structures such 

as trees and graphs – they are more difficult to parallelize 

(structured vs unstructured) 

• Successful Irregular Computations on GPU  
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Unified Flow Solver 

Coupling 

Algorithm 

Boltzmann 

Equation 

Domain 

Decomposition 

Continuum (NS) 

Schemes 

Lagrangian Particle  

Module (DSMC) 

Direct Numerical 

Solution (DNS) 

DNS + AMPS 

(Adaptive Mesh in 

Phase Space) 

Direct Numerical Solution of 

the Boltzmann kinetic 

equation and Particle 

(DSMC) solvers for coupled 

atomistic (kinetic) and fluid 

(hydrodynamic) models with 

AMAR capabilities 

• Self-Aware Physics and Adaptive Numerics 

• Dynamic adaptation of computational (Cartesian) 
mesh to solution and geometry 

• Automatic switching between kinetic and fluid models 
based on continuum breakdown criteria 

• Efficient parallel execution (SFC & FoT) on a NASA 
CPU-GPU cluster with 1000 nodes. 

GFS two-phase VoF solver 

with tree-based AMR 
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• GFS was originally designed for 

simulations of multi-phase flows using 

VoF method.  

• A particulate module was added later 

for tracking finite-volume solid particles 

in the Eulerian fluid flow. 

• The nearest-neighbor search approach 

has been used with great success in 

DSMC simulations with adaptive 

Cartesian mesh achieving extreme 

parallelism and scaling 

• This technique has been implemented 

into the UFS debris transport analysis 

tool enabling a high-fidelity Eulerian-

Lagrangian multi-phase modeling of 

three component flows: the gas phase, 

fine dust phase and discrete particle 

phase.  

Particulate Modules in GFS and UFS 

Lagrangian tracking of large 

particles within the Eulerian-

Eulerian gas-dust flow with AMR to 

flow gradients and to particle 

density 
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• SFC allows complete flexibility for a fine-grained domain decomposition with highly 

efficient dynamic load balancing (DLB) among processors.  

• During sequential traversing of cells, the physical space is filled with curves in N-

order (Morton ordering), and all cells are numbered a one-dimensional array.  

• A weight is assigned to each cell, proportional to CPU time required for 

computations in this cell. The array modified with corresponding weights, is 

subdivided into sub-arrays equal to the number of processors.  

• Coarse-grained domain decomposition is obtained by using multiple octrees (a 

“FoT”) connected through their common boundaries. Graph partitioning algorithms 

are used for domain decomposition and DLB.  

Space Filling Curves & Forest of Trees 
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UFS-DSMC: Lagrangian Particle Transport Module 

 Use a single, dynamically adapted mesh for (i) particle collision and 

(ii) statistics collection/visualization and particle movement 

 Tree data structure allows efficient data management for AMR and 

parallelization of the code 

 DSMC approach requires cell sizes less than local mean free path, λ, 

→ fine grids are necessary in dense flow regions 

level 0 

level 1 

level 2 

level 3 

Particle trajectory involves cells at different levels 

solid 

R.R. Arslanbekov, V. I. Kolobov, J. Burt and E. Josyula, “Direct Simulation 

Monte Carlo with Octree Cartesian Mesh”, AIAA 2012-2990 
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• An all-device (GPU) approach: the entire computation is performed 

on the GPU device.  

• Separate kernels for particle moving, indexing, collisions and 

sampling 

• Each particle is followed by a separate thread until the particle hits a 

face of a cell in which it is currently located. At cells faces, particles 

are either reflected or moved to neighbor cells using neighbor indices.  

• Particle collisions in each cell are treated by a separate thread.  

• Sampling of particle locations and velocities are performed with 

sampling kernels (each cell is treated by a separate thread).  

Implementation of GPU kernels 

GPU Kernels are implemented according to 

 

Su C.-C., Smith M. R., Kuo F.-A., Wua J.-S., Hsieh C.-W., and Tseng K.-C., “Large-

Scale Simulations on Multiple Graphics Processing Units (GPUs) for the Direct 

Simulation Monte Carlo Method,” J. Comp. Phys. Vol. 231 (2012) 7932-7958. 

 

with modifications for unstructured  Cartesian mesh 
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GPU-Accelerated UFS-DSMC: Demonstration 

• Intel(R) Xeon(R) X5675 @ 3.07GHz CPU processor and Tesla 

C2075 GPU device.  

 

• Hypersonic Flow over a cylinder at low Knudsen number (Kn = 

0.01) with Mach = 10.  

 

• The free stream temperature was set to 200 K and the wall 

temperature – to 500 K. A non-uniform grid was used with a finer 

grid in the stagnation region (denser region) and a coarser grid at 

the back of the cylinder (rarefied region).  

 

• The number of cells is ~130K for this case. Two cases were 

benchmarked with the total number of particles of ~0.5M and ~2M 
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UFS-DSMC: Rarefied Hypersonic Flow 

 First 10,000 time steps on a uniform level 5 grid  

 Between time steps 10,000 and 14,000, the grid is adapted 

until    x < MFP/2 condition is met for all cells 

 There is a large difference of 6 levels of refinement along 

the cylinder surface                       Mach=10, Kn=0.05  

 Final, adapted grid has about 22,000 leaf cells and is 

characterized by about 20 (free stream region) to about 2 

(stagnation region) particles per cell. 
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GPU-Accelerated UFS-DSMC: Tests 

• Overall speedup factor of 22 (real CPU-only time/real GPU-CPU 

time = 51136 sec/2306 sec) was achieved for the case with 2M 

particles and 29 for the case with 0.5M particles.  

• In particular, the particle movement part speeds up by a factor of 22 

and the particle collision part (without the indexing part) – by a factor 

of 36 for the case with 2M particles.  

• Collisional part is accelerated better since no neighbor 

indexing/retrieving is involved. Collisional kernel speedup is slightly 

larger in case with 0.5M particles which is most likely due to a lower 

particle-indexing overhead. 

Number of Particles 0.5M 2M 

Particle Move Speedup 22 22 

Particle Collision Speedup 44 36 

Particle Move (CPU), % 42 53 

Particle Collision, (CPU), % 35 34 

Particle Move (GPU), % 64 70 

Particle Collision (GPU), % 27 27 

Overall Speedup 29 22 
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Summary for single GPU device  

• GPU accelerated DSMC code (UFS-DSMC-GPU) has been 

implemented 

• Implementation was carried out based on algorithms proposed in the 

literature for uniform (structured) Cartesian grids and simple embedded 

bodies 

• These algorithms have been extended to adaptive (unstructured) octree 

Cartesian grids and to solid bodies of arbitrary shape (specified either 

analytically or from CAD files) 

• Corresponding GPU kernels have been developed for each part of code 

(particle movement, collisions, sampling) 

• The code has been tested on a modern GPU device and validated 

(against CPU-only results) for different problems 

• For typical cases of hypersonic flows past blunt bodies in collisional 

regimes (Knudsen numbers 0.01–0.05), speed up factors of 25–45 were 

achieved for different parts of the code.  
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Multiple GPUs: MPI-CUDA Paradigm 

• Spatial domain decomposition using the Forrest-of-Trees (FoT) method 

• MPI protocol to exchange data from memory of all MPI processors and synchronize 

• CUDA is used to put the DSMC-related simulation components on GPU and for data 

transfer between CPU (host) memory and the GPU (device) global memory 

• CUDA  API function cudaSetDevice() to assign a GPU to each individual MPI process 

• For data exchange between global memory of different GPU devices we use the 

CUDA API function cudaMemcpy() (red line) 

• Data is transferred from host-A to host-B (blue line) using the MPI protocol with 

MPI_Send() and MPI_Recv(). 

• cudaMemcpy() to transfer data from host-B to device-B.  

From Su., et al. 

J. Comp. Phys. 

Vol. 231 (2012) 

7932 
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MPI in UFS-DSMC Particle Code 

 

• Each CPU operates on a given number of boxes, which is useful since 

computational grid is stored only on the host CPU.  

 

• During grid adaptation and then dynamic load balancing (DLB) these boxes are 

exchanged between the CPUs according to some balancing algorithm.  

 

• Each box has it own ID number and a set of boxes on each host CPU share the 

same PID (Processor ID) number.  

• MPI capability implementation using FoT 

parallelization algorithms.  

• Domain decomposition is based on breaking 

the computational domain into boxes: each 

CPU then receives a set of such boxes 

depending on some partitioning algorithm (e.g., 

based on a number of cells).  

• The FoT is a coarse-grain parallel algorithm 

since load balancing can be done only in terms 

of the building (root) boxes.  

 

Initial grid and box ID partioning for a problem 

of heat transfer with 16 (root) boxes and 

immersed solid phase 
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MPI in UFS-DSMC Particle Code 

• All operations are performed in terms of classes and objects 

• MPI exchanges are called via special read and write methods of the objects/classes. 

• Exchanges implemented by creating special classes and objects which are inherited 

from the main GtsObject class (parent class) 

• Particles are initialized in each PID 

domain. They start to move and interact 

with each other, with domain boundaries, 

and with solid surfaces/phases immersed 

into the domain 

• Particles (their position, velocity, 

remaining move time, etc.) which hit an 

MPI boundary are stored in a special list  

• Knowing direction of box boundary face 

a particle hits (PID=9), its neighbor PID 

(e.g., PID=8) is determined 

• Neighboring PIDs receive and then add 

these particles for further processing 

during the next time step.  Processor ID partioning for 16 CPU/GPUs, problem of heat 

transfer. Particle interactions with solid surface/phases, with 

other particles and with domain and MPI boundaries 
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MPI in UFS-DSMC Particle Code: Demo 

• Heat transfer between a cold cylinder (temperature Tsolid = 300 K) immersed into a 

sealed box with hot walls (temperature of the walls Twall = 600 K).  

• The (initially uniform) density of gas phase particles corresponds to Knudsen 

number 0.01. 

• Full energy accommodation assumed for particle-wall interactions.  

• 30M particles used to achieve good statistics.  

• Computational grid with a layer of higher resolution grid around solid surfaces.  

• Local cluster node consisting of 8 CPUs (processor Intel(R) Xeon(R) X5675 @ 

3.07GHz).  

Gas number density Temperature 
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MPI in UFS-DSMC Particle Code: Testing 

• Real time (required for 200 steps) for different number of CPUs used 

• Computational time drops almost linearly (power law factor close to 0.9) 

with increasing the number of CPUs.  

• Almost ideal scaling is achieved for the implemented MPI module. 
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MPI-CUDA in UFS-DSMC Particle Code 

• A GPU kernel is used to calculate the positions of 

all particles over a time step Δt. 

 

• Each particle’s deterministic motion is handled by 

a CUDA thread, using data held entirely in global 

memory. 

 

• Particles determined to have left the current GPU’s 

simulation domain are placed into a buffer (in the 

device, and finally on the host) in preparation for 

migration to other GPU devices. 

 

• Introduce new particles based on inlet boundary 

conditions. 

 

• Send and receive from buffers of all MPI 

processors (host) with the MPI API protocol 

MPI_Send() and MPI_Recv(). 

 

• Reallocate particles from buffers into their newly 

allocated GPU’s global memory.  After Su et al. J. Comp. Phys. Vol. 231 

(2012) 7932. 

A flowchart demonstrating the 

particle movement phase 

algorithm in the hybrid MPI-CUDA 

DSMC scheme: 
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MPI-CUDA in UFS-DSMC Particle Code: Testing 

• The MPI-CUDA algorithms was first tested and debugged on a local cluster 

consisting of 2 Tesla C2075 GPU cards.  

 

• Then, used NASA Pleiades cluster has 64 Westmere nodes each including 

one NVIDIA Tesla M2090 (512x 1.3GHz cores) GPU.  

 

• Each M2090 GPU device is connected to the CPU node via a PCI Express 

bus. The nodes are connected via high-speed Infiniband.  

The following modules were used to compile and run 

Runs were carried out in “gpu” interactive queue using 1 CPU/1 GPU per 

node 
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MPI-CUDA in UFS-DSMC Particle Code: Testing 

• Same problem of heat transfer used for the CPU-only scaling tests presented 

above.  

• Results obtained on different number of GPUs are identical and they are analyzed 

for the obtained steady-state solutions (after 40,000 time steps). 

• Real time (per 2,500 time steps) as a function of the number of GPUs is shown 

• A very good scaling is obtained with the power law scaling factor being 0.8 (factor 

of 1 means ideal scaling) 

• This provides a proof of the high efficiency of the implemented hybrid MPI-CUDA 

algorithms 
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Future Work for Lagrangian Particle Module  

• Extension to 3D geometries with GPU  

• Extension to dynamically adapted grids with GPU (every, say, 100th or 

1000th time step, transfer all particles back to CPU, do grid adaptation and 

cell re-indexing on CPU, put all particles back to GPU, do computations on 

GPU, and so on) 

• Dynamic Load Balancing (based on number of cells and/or number of 

particles per process) with MPI and GPU. Use MPI box exchange strategies 

in FOT 

• (Two-way) Coupling Eulerian-Lagrangian modules via mutually induced 

forces. 

• Particle collisions for dense flows 

(a) Search level 1 (b) Search level 2 (c) Search level 3 

Neighborhood size for different search levels 

• Computation of particle collisions using a 

search over a local volume.  

• Particle collisions amongst all the particles 

contained in the volume defined by these 

neighboring cells. 

• A pre-specified search level determines the 

number of neighboring particles amongst 

which the collisions are enacted.  
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DoE SBIR Phase I Project 

Develop a modern adaptive Eulerian-Lagrangian solver for 

multiphase flows on parallel CPU-GPU clusters with dynamically 

adaptive Cartesian mesh for high resolution of flow and particle 

transport.  

  

Specific objectives of Phase I: 

• Develop GPU-accelerated Lagrangian particle transport including: 

• GPU processing of particle motion and collisions 

• Particle mapping to grid 

• Interpolation of local forces from Eulerian fluid and inter-phase 

momentum transfer 

• Develop GPU-accelerated Eulerian solver for octree Cartesian mesh 

• Improve parallelization algorithms with GPU-accelerated 

construction of Space Filling Curves and Octrees 

• Develop detailed plan for Phase II implementation, testing and 

validation as well as marketing and commercialization. 
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